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Abstract
Today bioinformatics is growing field due to its varied applications in the area of the biology and information science and
engineering. It is a combination of biology, mathematics, statistics and information technology. Hence it is very helpful in
solving many biological problems. Genome sequencing is becoming popular day by day and is broadly utilized in the gene
finding methods for DNA sequences. The gene of eukaryotes is composed of DNA and the DNA sequence is contains four
different nucleotides. The DNA sequence contains exon and intron regions that is the coding and non-coding regions
respectively. Exon prediction in the gene of eukaryotes by computational methods is not yet solved fairly. The predicted
exons are very useful for the research pioneers in the field of biological science. Now-a-days, a lot of work has been carried
out in the area of gene prediction or exon prediction. A broad range of significant machine learning approaches are propounded
by researchers for exon prediction. There are several machine learning approaches used in solving gene sequence problems.
Hidden Markov Model (HMM) is one of the approach that has been used for exon prediction in an anonymous genomic DNA
sequence. In this paper, we used HMM for the exon prediction.
Key words : Hidden Markov Model (HMM), Deoxyribonucleic Acid (DNA), coding sequence (CDS), ANN (Artificial Neural

Network), SVM (Support Vector Machine), GA (Genetic Algorithm).

Introduction
The biology of DNA is quite complex and interesting.

In eukaryotic (i.e. multicellular cell either of plants or
animals) cell, the nucleus inside the cytoplasm contains
the blueprint of life, the DNA. This DNA is composed of
four nucleotide bases Adenine (A), Guanine (G), Cytosine
(C) and Thymine (T). The Gene that is made up of small
segments of DNA is the hereditary material in most of
the eukaryotes. The gene is organized into two most
important section exons and introns. Exons are the coding
region and the introns are non-coding region of DNA.
When DNA undergoes into the process of transcription,
there occurs a process known as splicing, that removes
the introns and join the exons. Basically, the exons are
categorized into four classes: 5’exon, internal exon, 3’exon
and intronless exon. In CDS, the exon region starts with
codon ATG bases and ends with one of the three stop
codon, TAA, TAG and TGA bases. At least two exons
are there in CDS that makes us to know that there is
minimum one intron region and usually intron region starts
with GT bases and ends with AG bases (fig. 1). There

are several machine learning methods like ANN, GA,
SVM, and HMM used for exon prediction.

The term “exon” derives from the expressed region
of gene, coined by a biochemist, Walter Gilbert in 1978.
The notion cistron i.e., the transcriptional unit containing
regions that lost from the mature mRNA called the intron
(for the intragenic regions). Introns have a special
character that they have two distinct nucleotides at either
end. At the 5' end the DNA nucleotides are GT and at
the 3' end they are AG. These nucleotides are part of the
splicing sites [1].

Splice Site Donor : splicing site at the beginning of
an intron, intron 5' left end.

Splice Site Acceptor : splicing site at the end of an
intron, intron 3' right end.

The GT/AG mRNA processing rule is applicable for
almost all eukaryotic gene. A polypyrimidine (CnTn) motif
is present upstream of the CAG intron 3' ending. More
upstream, the consensus branch site (CTGAC) is a
necessary component in the effective splicing of the pre-
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mRNA. Once  introns  are  removed  i.e. spliced out, the
mature messenger RNA (mRNA) leaves the nucleus and
is translated into protein (Protein synthesis).

Hidden Markov Model (HMM)
HMM is a strong statistical model that is actually an

indexed sequence of random variables. Although, this
model was developed mostly for speech recognition,
pattern recognition, gesture recognition, etc., in 1970s.
But nowadays, HMMs are widely applied in the analysis
of biological sequences, specially the DNA. HMM is
becoming a necessary part of bioinformatics.

Now, consider a process that can be described at
any time as being in one of a set of N distinct states as
illustrated in the fig. 2, N = 4. At any index of time, system
undergoes a change of state (possibly back to the same
state) according to a set of probabilities.

P(qt = Sj|qt–1 = Si, qt–2 = Sk, ...) = P(qt = Sj|qt–1 = S)
    = aij  1<i, j < N   (1)

Where, qt is actual state at time t and aij is the
transition probability between state i and j. State transition
coefficients have the property.
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The above stochastic process could be called an
observable Markov Model since the output of process is
the set of states at each instant of time, where each state
corresponds to a physical event. This model is too
restrictive to be applicable to many problems of interest
[2]. We can extend the concept of Markov models to
include the case where observation is a probabilistic
function of the states. Underlying a HMM is a basic
Markov process that is not observable, but can be
observed through another set of stochastic sources that
produce observation.
1. Elements of Hidden Markov Models

In order to characterize an HMM completely,
following elements are needed [2].

 The number of states of the model, N
 The number of distinct observation symbols per

States M
 The state transition probability distribution

     A = {aij} )|( 1 itjtij SqSqPa       (3)

 The observation symbol probability distribution
in state

j, B = )|()( jtkj SqtatVPkb  (4)

 The initial state distribution
i = P(q1 = Si)     (5)

Fig. 1 : Basic structure of HMM model for exon prediction.

Fig. 2 : Markov chain with four states.

A full probabilistic description of the above system
requires specification of current state and all previous
states. For the special case of first order Markov process
this probabilistic description is truncated to just the current
and previous state. [2]
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 The model parameters notation:
 = (A, B, ) (6)

2. Three Basic Problems of HMM
There are three basic problems that have to be

addressed in order to use HMMs in practical applications.
Suppose we have a new symbol sequence O = O1, O2,
…, OT

1. How can we compute the observation probability
P(O|) based on a given HMM?

2. Given a model  and a sequence of observations
O = O1, O2, O3, … OT, what is the most likely state

sequence in the model that produced the
observations?

3. Given a model  and a sequence of observations
O = O1, O2, O3,…,OT, how should we adjust the
model parameters A, B,  in order to maximize
value of P(O|)

3. Solution of first problem
At first, we evaluate the probability of observation

sequence using Forward-Backward algorithm. As this is
a very efficient procedure even for large values.
4. Forward Procedure

The forward variable t(i) defined as
t(i) = P(O1, O2, O3, ..... ,Ot, qt = Si |)
Where, probability of observation sequence: O1, O2,

O3,……,OT

S = states at given time t and given model (),
We can solve t (i) inductively as follows:
1. Initialization: t (i) = i bi  (O1)    1 i N

2. Induction : t+1(i)    11  



   tj

N

i ijt Obai

1  t  T-1

3. Termination : P (O|)   


N

i T i
1

1  j  N

Step 1 : Induction step, which is the heart of the
forward calculation in the fig. 3, state Sj can be reached
at time t+1 from the N possible states Si , 1  i  N at
time t. Summing this product t (i) * aij  overall all the N
possible states the result in the probability of Sj at time
t+1 with all accompanying previous partial observations
once this is done Sj is known it is easy to see that t+1(j)
is obtained by accounting for observation Ot+1 in the state
j.

Step 2 : By multiplying the summed quantity by the
probability bj (Ot+1) the computation is performed for all
states j, 1  j  N for a given t, where t=1 …T-1

Step 3 : Gives the desired calculation of P(O|) as
the sum of the terminal forward variables t (i),

t (i) = P (O1, O2, O3, ....., Ot, qt = Si|)
5. Solution of second problem

We run it for the more than hundred times by
changing the values of observation symbol matrix. We
get more than hundred output values of P(O|). Now,
we find the maximum value of P(O|) among them, which
will be maximum probability values of P(O|).

Implementation Details
1. To find exon and intron region in a gene

sequence
Initially, we used computational method for finding

start and stop codon for an anonymous DNA sequence.
At last, all the regions of exon and intron have been
fetched. For this we are using computational method.
Here, an input (for a large observation sequence), i.e.
the DNA sequence has been taken and processed. After
computer processing an output generated.
2. To find the probability of observation sequence

for ATG (Start Codons) and TAA/TAG/TGA
(Stop Codon)
Here, using computer language, HMM forward

method is implemented and an input file, as an observation
sequence (large DNA sequence) has been taken.

For finding both start and stop codons, forward
symbol αt (of forward method) has been calculated. On
the basis of previous value of αt, next value of αt+1, αt+2,
αt+3.... are calculated for both start and stop codons
individually.  For calculation of above values we used state
transition matrix (A= aij), observation symbol probability
matrix (B=bj(k)) and initial probability (πi). In this way,
we calculated n values of P(O|λ) and find the maximum
values of P(O|λ) both for start codon and stop codon.
After comparing these values we found that the similar
result are also getting for the problem 2 for both start

 S 1  
S 2  
S 3  

S N  

S i 

t(i)
t+1(j)

Fig. 3 : Representation of sequences for the computation of
forward variable.
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and stop codons.

Results and Analysis
In this section, we discuss and analyze the result. At

first, an input file as an anonymous large DNA sequence
(here a stretch of that sequence has been shown in the
input file) has been taken and an output file for the result
to be displayed. In input file, we read character by
character and by using string matching algorithm we find
that the start and stop codons. Now, we fetch string of
A, G, C and T that begin from start codons and terminate
at end codons. This is the ORF (open reading frame)
region that contains both exon and intron regions. In
between two exon regions, there is an intron region found.
It is starting from GT and ending to AG. We fetch this
string and then the region from GT to AG of the sequence
i.e. the intron region is removed and the rest of the
sequence is concatenated. Thus output file contains all
the exon regions.

Input File of observation Gene Sequence1:
O[T]=AGCATGTTGAGAAAGGCAAGAAGATTTTTA
TTA TGAAGTGT TCCCAGTGCCACACCGTTGA
AAAGGGAGGCAAGCACAAGACTG ACCAAAT
CTCCATGATCTCTTTGCCGGAAGACAGGTCAG
GCCCCTGATACTCTTACACAGCCGCCAATAAGAACA
AAGGCATCATCTGACAGAGGATACACTGATGA
GTATTTGGAGAATCCCAAGAAGTACATCCCTGGAA
CAAAAATGATCTTTGTCGGCATTAAGAAGAA
GGAAGAAAGGGCAGACTTAATAGCTTATCT
CAAAAAAGCTACTAATGAGTAA

Output File : Figs. 4 and 5 shows the output file
containing exon region and exon and intron region,
respectively.

Initially, observation sequence probability has been
calculated based on the start codons ATG and then for
stop codons TAA/TAG/TGA individually. For this, we
took an input file an observation sequence and initial
probability. In this, we use forward procedure and the
forward symbol  (αt(i)) has been calculated and on the
basis of previous forward symbol (αt(i)) we evaluate the
next  (αt+1(i)) value.

In this, we use forward procedure and the forward
symbol (αt(i)) has been calculated and on the basis of
previous forward symbol (αt(i)), we evaluate the next
(α t+1(i)) value. We used recursion method for the
calculation and the formula that is being used is given
below:

(i) αt (i) = πibi (O1) 1  i  N

αt +1(i)    11  



   tj

N

i ijt Obai  [1t  T-1, 2jN]

(ii) Number of States (N): In gene sequence there
are four states we have been taken: A, T, G and C

a) State Transition Matrix A=(aij)
b) Observation Symbol Probability Matrix B =

(bj(k))
c) Initial State Distribution:
πi = [0.7, 0.1, 0.1, 0.1]
d) Output Matrix for maximum probability of

observation sequence for ATG
0.33 0.9 0.33 0.33
0.33 0.33 0.9 0.33
0.7 0.1 0.1 0.1
0.7 0.1 0.1 0.1
0.1 0.7 0.1 0.1
0.1 0.1 0.7 0.1
0.2 0.3 0.2 0.3
0.3 0.2 0.3 0.2
Observation Sequence 2:

O[T]=ATGGAGAACCTGAAGTCTGGAGTGTATCCT
CTCAAGGAAGCAAGTGGATGCCCTGGGGCTG
ACAGGAATCTTCTGGTGTACTCTTTTTATGAAAAGG
GGCCATTGACATTTAGGGATGTGGCCATAGA
ATTTTCTCTGGAGGAGTGGCAATGCCTGGACACTGC
TCAGCAGGATTTGTATAGAAAAGTGATGTTA
GAGAACTACAGAAACCTGGTCTTCTTGGGTA
TTGCTGTTTCTAAGCCAGACCTGATCACCTG
TCTAGAGCAAGGAAAAGAGCCCTGGAATATG.

Count = 288

Table 1(a) : State Transition Matrix for ATG.

A T G C
          

A 0.1 0.7 0.1 0.1
          
aij= T 0.1 0.1 0.7 0.1
          

G 0.7 0.1 0.1 0.1
          

C 0.7 0.1 0.1 0.1

Table 1(b) : Symbol Emitting Matrix for ATG.

A T G C

A 0.1 0.7 0.1 0.1

bj(k) = T 0.1 0.1 0.7 0.1

G 0.2 0.3 0.2 0.3

C 0.3 0.2 0.3 0.2



Initialization values
value of P(O|λ)1 0.090000
.
.
value  of P(O|λ)287      3.919639e-129
value of P(O|λ)288      3.128430e-128
In this section, observation sequence probability has

been calculated for the stop codons TAA/TAG/TGA.
For this, we took an input file, an observation sequence
and initial probability by applying forward algorithm. The
forward symbol (αt(i)) has been calculated and based on
previous forward symbol (αt (i)) the next value (αt+1(i))
was being evaluated. We use recursion method and using
the same formula, that is the final n values of P(O|λ).

(a) State Transition Matrix  A=(aij)
(b) Observation Symbol Probability Matrix B= (bj(k))

Observation sequence 3:
O[T]=ATGGAGAACCTGAAGTCTGGAGTGTATCCTCT
CAAGGAAGCAAGTGGATGCCCTGGGGCTGA
CAGGAATCTTCTGGTGTACTCTTTTTATGAAAAGG
GGCCATTGACATTTAGGGATGTGGCCATAGA
ATTTTCTCTGGAGGAGTGGCAATGCCTGGACACTG
CTCAG CAGGATTTGTATAGAAAAGTGATGTTAG
A G A A C TA C A G A A A C C T G G T C T T C T T G
GGTATTGCTGTTTCTAAGCCAGACCTGATCA
CCTGTCTAGAGCAAGGAAAAGAGCCCTGGAATATG

count = 288
Initialization values
P(O|λ)1 0.033000
.
.
P(O|λ)287 1.437170e-130
P(O|λ)288 8.535825e-130

1. To find maximum probability for start codon
(ATG)
Using observation sequence values  of P(O|λ)  has

been calculated and all the values of P(O|λ) calculated.
Next, maximum value of ATG found. Again like previous
step, we took an input file, an output file, an observation
sequence and initial probability, forward procedure has
been applied.

a) State Transition Matrix  A=(aij)
b) Observation Symbol Probability Matrix B=

(bj(k))

Table 2(a) : State Transition Matrix for TAA/TAG/TGA.

A T G C
          

A 0.9 0.33 0.33 0.33
          
aij = T 0.4 0.1 0.4 0.1
          

G 0.9 0.33 0.33 0.33
          

C 0.7 0.7 0.1 0.1

Table 2(b) : Symbol Emitting Matrix for TAA/TAG/TGA.

A T G C

A 0.1 0.7 0.1 0.1

bj(k) = T 0.1 0.1 0.7 0.1

G 0.2 0.3 0.2 0.3

C 0.3 0.2 0.3 0.2

c) Intial State Distribution:
πi =[0.33, 0.33, 0.33, 0.9]

d) Output Matrix for maximum probability of
observation sequence for TAA/TAG/TGA.

0.9 0.33 0.33 0.33
0.4 0.1 0.4 0.1
0.9 0.33 0.33 0.33
0.1 0.7 0.1 0.1

0.1 0.7 0.1 0.1
0.1 0.1 0.7 0.1
0.2 0.3 0.2 0.3
0.3 0.2 0.3 0.2

Table 3(a) : State Transition Matrix for ATG.

A T G C
          

A 0.33 0.9 0.33 0.33
          
aij = T 0.33 0.33 0.9 0.33
          

G 0.7 0.1 0.1 0.1
          

C 0.7 0.1 0.1 0.1

Table 3 (b) : Symbol Emitting Matrix for ATG.

A T G C

A 0.1 0.7 0.1 0.1

bj(k) = T 0.1 0.1 0.7 0.1

G 0.2 0.3 0.2 0.3

C 0.3 0.2 0.3 0.2

c) Intial State Distribution
πi = [0.9, 0.33, 0.33, 0.33]
d) Output Matrix for maximum probability of ATG
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0.33 0.9 0.33 0.33
0.33 0.33 0.9 0.33
0.7 0.1 0.1 0.1
0.7 0.1 0.1 0.1

0.1 0.7 0.1 0.1
0.1 0.1 0.7 0.1
0.2 0.3 0.2 0.3
0.3 0.2 0.3 0.2
Observation sequence 4:

O[T]=ATGGAGAACCTGAAGTCTGGAGTGTAT
CCTCTCAAGGAAGCAAGTGGATGCCCTGGGGCTGA
CAG GAAT CTTC TGGT GTAC TCTT TTTATG
AAAAGGGGCCATTGACATTTAGGGATGTGGCCA
TAGAA TTTTCTCTGGAGGAGTGGCAATGCCT
G GAC AC T GC T CAG CAG GAT TT G TATAG A
AAAGTGATG TTAGAGAACTACAGAAACC
T G G T C T T C T T G G G TAT T G C T G T T T C TAA
G C C A G A C C T G A T C A C C T G T C T A G A
GCAAGGAAAAGAGCCCTGGAATATG

count = 288
T = 288
Length of observation sequence: 288
Value of P(O|λ)1 5.326183e-130
Value of P(O|λ)2 4.355309e-85
Value of P(O|λ)3 1.110692e-85
Value of P(O|λ)4 2.563205e-86
.
.

max value of P(O|λ) value of_initial_codons=5.0509e-
84
2. To find maximum probability for stop codons

(TAA/TAG/TGA)
In this again, we have taken observation sequence

probability has been calculated according to the stop
codons TAA/TAG/TGA. Here also, we took an input
file, an output file, an observation sequence and initial
probability, and all the values of P(O|λ)  values  been
stored.

a) State Transition Matrix A=(aij)
b) Observation Symbol Probability Matrix B =

(bj(k))

c) Intial State Distribution :
πi = [0.33, 0.33, 0.33, 0.9]

Max value of P(O|λ) for stop codon=2.7877e-85

Conclusion
In this paper, we tried to find exon region in the large

DNA sequence of eukaryotes using machine learning
approach. So, we can use many machine learning
approaches like HMM, ANN, SVM and GA. But in this
we used only HMM to identify the exon region and
removed the intron region. We use computational method
for that and found the probability where the exon region
must be present. Here, we have taken few DNA
sequences, maximum length of each DNA sequence is
around thousand characters. In future, this method of
HMM is going to be used to find the maximum probability
of exon region. Thus, we can identify as well as predict
the exon region of any length for genome of any organism.
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